
^ 
SCHOOL 
OF 

ENGINEERING 
& APPLIED SCIENCE 

University of Virginia • ^sterns Engineering 

Tracking Multiple Air Targets in a Sparse 

Data Environment 

A Thesis 

Presented to 

The Faculty of the School of Engineering and Applied Science 

University of Virginia 

In Partial Fulfillment 

of the Requirements for the Degree of 

Master of Science in Systems Engineering 

Submitted by: 

Captain Suzanne M. Oldenburg 

May 2000 

DISTRIBUTION STATEMENT A 

nsasr9 20000526 119 
DTIC QUALITY INSPECTED 3 



Approval Sheet 

This thesis is submitted in partial fulfillment of the requirements for the degree of 
Master of Science in Systems Engineering. 

Captain Suzanne M. Oldenburg, Author 

This thesis has been read and approved by the Examining Committee: 

Dr. Donald E. Brown, Advisor 
Department of Systems Engineering 

Dr. Christina Mastrangelo 
Department of Systems Engineering 

Dr. Maite Brandt-Pearce 
Department of Electrical Engineering 

Accepted for the Department of Systems Engineerings 

Dr. Donald E. Brown, Chairman 
Department of Systems Engineering 

Accepted for the School of Engineering and Applied Science: 

*£.(Q, U-1L.2. 
Dean, School of Engineering and Applied Science 

May 2000 



11 

Abstract 

The main issue with multiple target tracking is associating the observations of a 

target from one scan with subsequent scans of the target in order to determine which data 

from one scan are associated with data from previous scans. Once these data points are 

correlated over several scans, the next step is to determine the trajectory of the underlying 

targets. 

Multiple target tracking (MTT) is essential in military surveillance operations and 

air tracking control systems. Most MTT systems incorporate linear or piecewise linear 

algorithms for the filtering and prediction of target positions and finite state Markov 

Chain techniques. In many instances, data received from one instance to the next consists 

of a time delay. The greater the time span between data points the more important the 

ability to be able to estimate the target's position between time spans. Large separations 

in data points results in a sparse data file requiring the data to be linked together through 

data fusion in order to capture the complete picture of the target's flight path. 

In predicting the target's next location it is necessary for the estimate to be 

determined prior to receiving the target's next true location. We must be able to process 

the data in a timely fashion and therefore have an efficient algorithm. This problem is 

best modeled with time series with the process given in a state-space representation that 

can handle the multivariate case.   The state space model allows the trend and seasonal 
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component to evolve randomly as a stochastic process rather than deterministically. The 

state-space model consists of two equations. The observation or measurement equation, 

Yt, expresses the n-dimensional observations in vector form. The state equation 

determines the state at time Xt+i in terms of the previous condition and a noise term. The 

state space model is also referred to as a Markovian or canonical representation of a 

multivariate time series process. The use of Kaiman filtering accommodates a unified 

method to predict and estimate for all the processes that are given in the state space 

model. 

With advancements in computer technology, other tracking methods are being 

explored. Bayesian inference is one such method that was not feasible in the past due to 

the large computational requirements and terrain based tracking uses Bayesian inference. 

This thesis analyzes two methodologies: the Kaiman filtering methodology and the 

terrain based tracking methodology. 

The thesis makes contributions to the knowledge base of multiple target tracking. 

First, this thesis develops a test environment for multiple target tracking and sparse data. 

Second, an extension of terrain based tracking is formulated for the application of air 

targets. Third, the optimization of the Kaiman filtering parameters is accomplished with 

the use of response surface methodology. Finally, testing and evaluation of Kaiman 

filtering and terrain based tracking is examined for multiple targets in both a high data 

rate environment and the sparse data environment. 
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1     Introduction 

1.1 Motivation 

I have an undergraduate degree in Aerospace Engineering and I am an Air 

Defense Artillery Officer in the United States Army. I have worked with the HAWK and 

PATRIOT radar systems for the past ten years. This thesis allows me to incorporate my 

previous areas of study and my current work experience. 

1.2 Overview 

The goal of tracking is to use observations related to the target to estimate present, 

future or past states of the target. Target tracking can be accomplished by utilizing both 

dynamic and static information. Dynamic data are data revealed during the tracking 

process. Static information consists of knowledge of the terrain, historical patterns of 

operation, and knowledge of the target's intentions. The basic equations can be modified 

to account for static information. 

Kaiman filtering is the traditional method of tracking targets that is a widely accepted 

tracking algorithm and is found in many of today's radar systems. Kaiman filtering uses 

the technique of gating and state-space representation given prior observations and 

predicts the next location. 



"Bayesian filtering is a recursive form of Baye's theorem. Bayesian trackers are now 

computationally feasible and extremely flexible in fusing diverse types of information." 

There are two methods of computation. The batch method is a "Monte Carlo evaluation 

that replaces stochastic processes by a finite number of sample paths" [Stone, et al., 

1999, p. 56]. The second method is a recursive method that takes the previous 

observation and static information and predicts the future observation. Terrain based 

tracking uses a Bayesian recursive approach. 

The choice of method for filtering and target tracking prediction is the first 

consideration that must be made when developing a multiple target tracking system. The 

designer should also consider the data rate in the tracking environment and the states that 

should be incorporated. These areas will be discussed further. 

1.3 Problem Statement 

Multiple target tracking (MTT) is essential in military surveillance operations and air 

tracking control systems. Most MTT systems incorporate linear or piecewise linear 

algorithms for the filtering and prediction of target positions and finite state Markov 

chain techniques. In many instances, data received from one instance to the next consists 

of a time delay. The greater the time span between data points the more important the 

ability to be able to estimate the target's position between time spans. Large separations 



in data points results in a sparse data file requiring the data to be linked together through 

data fusion in order to capture the complete picture of the target's flight path. 

In predicting the target's next location it is necessary for the estimate to be 

determined prior to receiving the target's next true location. We must be able to process 

the data in a timely fashion and therefore have an efficient algorithm. This problem is 

best modeled with time series with the process given in a state-space representation that 

can handle the multivariate case. The state space model allows the trend and seasonal 

component to evolve randomly as a stochastic process rather than deterministically. The 

state-space model consists of two equations. The observation or measurement equation, 

Yt, expresses the n-dimensional observations in vector form. The state equation 

determines the state at time Xt+i in terms of the previous condition and a noise term. The 

state space model is also referred to as a Markovian or canonical representation of a 

multivariate time series process. 

The use of Kaiman filtering accommodates a unified method to predict and estimate 

for all the processes that are given in the state space model. When the time between 

scans becomes large, 10, 20 and 40 second time intervals for the air target data, the result 

is a sparse data set resulting in a possibly higher error rate in predicting the target's 

subsequent locations. With the use of Kaiman filtering and terrain based tracking, targets 

will be examined and tracked given sparse data. 



The main issue with sparse target tracking is associating the observations of a target 

from one scan with subsequent scans of the target in order to determine which data from 

one scan are associated with data from previous scans. A sparse data environment is 

defined as one that has a low data rate. These data points are correlated over several 

scans in order to determine the trajectory of the underlying targets. Because of the low 

data rate, the traditional methods of Kaiman filtering are not as successful due to the non- 

Gaussian nature of this data environment. 

1.4 Approach 

The proposed research will provide an estimation of multiple target tracking given 

air track data files from the National Training Center utilizing the methodologies of 

Kaiman filtering and terrain based tracking in order to determine the most efficient 

methodology in multiple target tracking prediction. The same data files will then be 

made sparse by using data points every 10, 20, and 40 seconds. These methods will be 

applied to the modified data file and the results examined for the sparse data scenario to 

find the most efficient methodology. 



2    Background 

2.1 Historical 

The first radar systems were introduced to the military as they faced the outbreak 

of World War II. Having very little experience with the technology, scientists were asked 

to assist in the use of the newly developed radar to locate enemy aircraft. It was soon 

found that radar was temperamental and did not function as they had in laboratory 

conditions. In September 1940, the British physicist, P.M.S. Blackett, brought together a 

team of scientists to study the systems in the field. "This type of scientific activity 

became known as 'Operational Research' because the first studies were devoted to the 

operational use of radar" [Ackoff, 1963, p.7]. 

Radar has proven to be an invaluable technology both for military and civilian use 

and remains a major area of investigation in order to improve their capabilities. Most 

recently, the problem of tracking targets at longer ranges introduces the sparse data 

tracking problem. 

Target tracking and prediction are needed in a radar system due to the scan nature 

of the radar beam. At time Tj the radar beam detects multiple targets. Subsequent scans 

continue to detect multiple targets.   It is necessary to correlate these tracks in order to 



determine if the tracks detected initially are associated with the same tracks detected 

during subsequent scans. The correlation problem is more difficult for long-range 

sensors that have longer scan times. These sensors can also fail to detect targets between 

scans. This problem is known as sparse data tracking and is vital for new sensor systems 

employed in both military and civilian contexts such as target interception and 

surveillance operations and air traffic control. Military radar needs to be able to 

determine the number of targets and be able to differentiate the targets for interception. If 

target locations can be predicted accurately ahead of time, the possibility of incorrectly 

identifying targets can be greatly reduced. For air traffic control it is necessary in order 

to prevent collisions and to be able to associate the targets' velocities. 

Most of today's military and civilian radar use the Kaiman filtering algorithm for 

tracking targets. Some of these radars are summarized in Table 2.1. 

Table 2.1 Radars using KF Algorithm 

Radar Purpose 
PATRIOT Wide Angle electronically scanned phased array - 

Land Based 
AEGIS Wide  Angle  electronically scanned phased array - 

Shipboard 
HAWK GPS-22HiPAR Fan beam radar 
AN/SPS-49 Fan beam shipboard track-while-scan 
AN/TPQ-37 Long ranged electronically scanned phased array 
THAAD X-band active array system 
ASR-11 Digital Airport Surveillance 

DOD and FAA Track-while-scan 
ASR-23SS L-Band Airport Surveillance 

Track-while-scan 



The radar systems described in Table 2.1 work best when in a high signal-to-noise 

ratio environment. A high signal-to-noise ratio is a high data rate environment with 

minimum noise. The signal-to-noise ratio is a random variable and is best modeled as a 

stochastic process [Washburn, 1982]. There is no universal best choice for a model when 

developing a radar algorithm. Therefore there are a variety of radar systems built for 

specific uses as shown in Table 2.1. Part of the consideration of course in developing a 

new radar system is "cost, time, data availability and communicability of results" 

[Washburn, 1982, p. 3-8]. 

2.2 Objectives 

This thesis will examine multiple target data sets and apply the tracking 

algorithms of Kaiman filtering and terrain based tracking in order to determine the best 

approach for an efficient yet accurate algorithm. The sparse data environment will also 

be explored and results will be reported on both the use of Kaiman filtering and terrain 

based tracking. 
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2.3 Related Research 

2.3.1   United States Navy, Nodestar System 

The Nodestar system was developed as a multiple target correlator tracker for the 

Navy's underwater surveillance system as part of the Spotlight Advanced Technology 

Demonstration (ADT) [Stone, et al, 1999]. At the ADT, Nodestar functioned as a theater 

wide, multiple target, and correlator tracker for submarines. Nodestar is capable of 

processing different forms of information on multiple targets at sufficient speeds for 

surface ship and submarine applications. 

Nodestar's discrete state space has six or more dimensions. Position is 

represented in latitude, longitude and depth and operates in spherical coordinates. The 

velocities are represented in two dimensions, and are considered satisfactory for subs and 

surface ship problems. The sixth dimension is an attribute consisting of the acoustic and 

radar characteristic. Nodestar's motion updating is accomplished with a discrete space 

Markov chain motion model. The Nodestar system is a contact based, discrete, non- 

linear, non-Gaussian, multiple target, Bayesian tracker. 

Underwater surveillance systems are typically capable of handling low signal-to- 

noise ratio environments. As the depth changes, so does the water temperature therefore 

causing changes in the acoustic signals.  This tracker uses the surrounding terrain, water 



and the presence of landmasses. The detection of landmasses acts as negative 

information in this application. It is noted that when tracking submarines, the depth 

beneath the waters surface is approximately 100 nautical miles. At this depth, the effects 

of the earth's curvature are negligible and the assumption of an approximately flat earth 

model is appropriate [Stone, et. al., 1999]. 

2.3.2 United   States  Coast  Guard,  Computer Assisted  Search  and 

Rescue Planner (CASP) 

CASP 2.0 was developed by Wagner Associates for the U.S. Coast Guard and is a 

replacement search and rescue planning system. CASP 2.0 models targets before and 

after distress through paths created by a Monte Carlo model [Wagner, 1999]. 

CASP is a non-linear Bayesian tracker. CASP produces a probability distribution 

for target locations as a function of time to project one day ahead in order to plan for the 

next day's search. CASP uses concepts and algorithms from search theory and 

incorporates negative information, i.e. keeps track of the areas where the search found no 

targets. This negative information is used to compute posterior distributions for target 

locations. This stochastic process predicts the targets position and motion over time 

[Stone, et al., 1999]. 
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In addition, Wagner Associates demonstrated how track-to-track algorithms 

efficiently combine simulated outputs from a combination of sensors to produce a 

correlated picture for use in the United States Air Force for AW ACS multi-sensor 

integration. 

2.3.3 Terrain Based Tracker 

Work conducted by P.O. Nougues and Professor D.E. Brown developed a terrain 

based tracker to better predict the movement of ground targets over terrain. Terrain 

based tracking relates target tracking in terrain by "determining the best estimate of the 

probability density function of target location for successive time increments by 

combining the greatest amount of information available on terrain characteristics and 

target behaviour" [Nougues et al., 1995]. This methodology will be applied to air targets 

to determine if terrain based tracking can be applied to aircraft that take advantage of the 

terrain to determine their flight path. For instance, a target flying nap of the earth takes 

advantage of geographic features such as a mountain ranges, roads, rivers, etc. In 

addition, the relationship between targets flying over terrain features such as mountainous 

areas versus open terrain fields will be examined. Terrain based tracking will be 

examined to determine targets that utilize the terrain and will be used to predict the 

target's flight path. 
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3    Kaiman Filtering (KF) Algorithm 

The traditional method for tracking targets utilizes the Kaiman filtering algorithm. 

Kaiman filtering grew in popularity due to its capability of being applied to both 

stationary and non-stationary problems and has a wide variety of applications. Kaiman 

filtering has become especially important in the Aerospace Engineering field. "The 

Kaiman filter has become the standard tool for error analysis, design of data processing 

algorithms, navigation systems, Global Positioning System and satellite attitude control 

and attitude determination, as well as interpolation, extrapolation and smoothing 

problems" [Space Analytics Associates, 1999]. 

The Kaiman filter is also applied to multiple target tracking, error estimation in 

gyro systems and tactical ballistic missile positioning. The Kaiman filter is very effective 

in helping obtain estimates of impact points and launcher locations in the case of SCUD, 

intermediate range ballistic missiles, IRBM, and intercontinental ballistic missiles, 

ICBM. "A future use of Kaiman filters is in the 'smart' highway systems where it will be 

used to conduct the movement of cars traveling at high speeds in tightly bunched groups" 

[Cipra, 1993]. 
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The research proposed investigates the Kaiman filtering method and compares the 

results to terrain based tracking and also determines how well Kaiman filtering 

accommodates a sparse data environment. 

3.1 Problem Statement 

Target tracking and prediction are needed in radar systems due to the scan nature 

of the radar beam. At time Ti the radar beam detects two targets. The next scan, 

occurring at time Ti + t, detects two targets. Are these targets the same two targets 

detected on the first scan? In civilian air traffic control, it is necessary for the air traffic 

controller to know the number of targets present in order to prevent collisions and to be 

able to associate the targets' velocities. Military radar needs to know the number of 

targets and be able differentiate the targets for interception. If target locations can be 

predicted accurately ahead of time, the possibility of incorrectly identifying targets can be 

greatly reduced. 

3.2 State Space Model 

In order to model this problem in time series, the process can be given in state- 

space representation. The state-space model consists of two equations. Equation 3.1 

shows the observation or measurement equation, Yt, which expresses the n-dimensional 

observations in vector form. 
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Equation 3.1 Measurement Equation in Matrix Notation 

Yt = MX, + N, 

Where: 

M = [Ir 0] Observation Matrix 

r = first r variables are the current values 

N = Observation error 

Equation 3.2 shows the observed values Xt in the state vector Zt: 

Equation 3.2 Observation Matrix 

Xt=[Ir0]Zt 

The state equation determines the state at time Xt+i in terms of the previous 

condition and a noise term. Modeling state space makes use of a state vector and a state 

transition equation. The state vector is represented by Zt, Equation 3.3, of dimension s, 

where the first r variables consist of the current variables, Xt. The s-r variables consist of 

the predicted variables, X t+k/t- 
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Equation 3.3 State Transition Equation in Matrix Notation 

Zt+i = FZt+Get+i 

Where: 

F = s x s transition matrix which determines the dynamic properties of the model. 

G        = s x r input matrix determines the variance structure of the transition equation. 

et = sequence of independent, identically, normally distributed random vectors with 

dimension r with zero mean and covariance matrix Eee. The variable et also refers to the 

random error. 

For the air track data we are only looking at the two dimensional problem. 

Figure 3.1 shows the components of the state vector. Zt consists of the position 

vectors X and Y, velocity vectors Vx and Vy, and the predicted position and velocity 

vectors: 



15 

Zt:= 

X 

Y 

Vx 

Vy 

Xp 

Yp 

Vxp 

Vyp. 

-\ 

> 

> 

Measured data 

Predicted data 

Figure 3.1 The State Vector 

The state vector summarizes the data from past to present values within the time 

series relevant to estimating the future values of the series. The observed time series is 

then represented as a linear combination of the state variables. 

Once the state vector is defined, the state space model is fit to the data. F, G and 

S are estimated by approximating the maximum likelihood. Restrictions are placed on 

the F matrix for the air track data set to impose the restrictions on the distance vectors 

associated with the time lapse or lag in the radar observation of the target. Figure 3.2 

summarizes the restrictions on the F matrix. 
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Figure 3.2 The Transition Matrix 

After the parameters are estimated, the forecasts are made from the state-space 

model using Kaiman filtering. The Kaiman filtering method accommodates a unified 

method to predict and estimate for all the processes that are given in the state-space 

model. 

3.3 Types of Kaiman Filters 

The Kaiman filter deals with the general problem of first order, discrete time 

controlled processes. Variations of this are described below: 
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1. Extended Kaiman Filter (EKF) - applied to non-linear systems by linearizing 

about the current mean and covariance. 

2. Fixed Lag Kaiman Smoother (FLKS) - an approach to perform retrospective 

linear data assimilation. 

3. Extended Fixed Lag Kaiman Smoother - extension of FLKS applied to non- 

linear dynamics and observation processes. 

Other types of filters and some special filters include: 

Weiner filter 

Fading-memory polynomial filter 

Expanding-memory polynomial filter 

Kaiman filter 

Baye's filter 

Least-squares filter 

Benedict-Bordner filter 

Lumped filter 

Discounted least-squares g-h filter 

Critically damped g-h filter 

Growing-memory filter 
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These filters all differ by how the weighting factors are selected. Some are 

dependent on the number of observations as it is expected that as the number of 

observations increases, the prediction becomes more accurate. The weighting factors 

therefore initially are small. These filters can also be fixed coefficient filters and are used 

primarily when the sampling interval is small or there is a multiple target environment. 

3.4  Benefits of Kaiman Filter: 

The benefits of Kaiman filtering are summarized as found in Brookner, 1998: 

1. Provides running measure of accuracy of predicted position needed for weapon 

kill probability calculations. (Impact point prediction) 

2. Permits optimum handling of measurements of accuracy that varies with n, 

missed measurements, and non-equal time measurements 

3. Allows optimum use of a priori information if available 

4. Permits target dynamics to be used directly to optimize filter parameters 

5. Addition of random-velocity variable, which forces the Kaiman filter to always 

be stable 
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3.5 Kaiman Filtering Assumptions 

The following assumptions for Kaiman filtering are the assumptions applied to 

this problem. 

1. The initial state Xi is uncorrelated with all noise terms. 

2. The noise is all Gaussian white noise with zero mean 

3. The targets velocity is constant 

4. The radars scan-to-scan period = T. For the full data set, T =1 second. 

5. Atmospheric drag (ß) on the target is negligible 

In summary, the two critical assumptions of Kaiman filtering are a linear model 

with Gaussian measurement error and a discrete model with a 2a uncertainty ellipse. 

Distinction is made with respect to the Kaiman filtering motion assumption. This 

assumption states that "... Markov transition functions applied to Gaussian distributions 

on the target state space, [they] produce another Gaussian distribution" [Stone, et al., 

1999, p.66]. 
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Finally, assumptions for Kaiman filtering measurements are as follows [Stone et 

al.,1999,p.68]: 

1 All observations must be linear functions of the target state 

2. The observation errors are Gaussian 

3. Yt must satisfy the measurement Equation 3.1 

4. Measurement error is independent of Xt 

These assumptions guarantee that if the distribution of Xt is Gaussian prior to the 

observation, it is Gaussian posterior to the observation [Stone, et al. 1999]. 

Kaiman filtering can consider the following three models.   Our model is the constant 

velocity model. 

1. Constant velocity model 

2. Constant acceleration model 

3. Variance of velocity distribution is bounded 

The Kaiman filter prediction Equation 3.4 and Equation 3.5, for a target being 

tracked by only target velocity and position in one dimension, are shown below: 
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Equation 3.4 System Dynamic Position Model 

Xn+\=Xn+*Xn 

Equation 3.5 System Dynamic Velocity Model 

n+l       n       n 

Where: 

u„ = random velocity jump just prior to time n+l. 

x„ = targets range at scan n 

xn= target velocity 

T = scan-to-scan period. 

3.5.1   Radar Observations 

The radar makes the target measurements in polar coordinates. These 

measurements are transformed to rectangular coordinates in order for the tracking filter to 

operate and then back into polar coordinates after each prediction is made so that the next 

observation can be made in the measurement space. The data set from the National 

Training Center (NTC) was provided in rectangular coordinates. This data set has 

therefore already been transformed from the measurement polar coordinates. This 

relationship is shown in Figure 3.3. 
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R = ^jx2 +y2 +z2 

0 = ARCTAN 

f 
j = ARCSIN 

► y 4^7 

Figure 3.3 Polar Coordinate Relationship 

There are advantages and disadvantages to using Cartesian coordinate systems. 

Two disadvantages are the use of the range measurement and the coupling of the 

measurement errors. If a target is flying in an electronic countermeasure environment, an 

environment that can jam the radar, the range data will not be able to be obtained thus 

causing the radar to receive no target information and hence result in sparse data. 

For the purpose of air target tracking, our targets fly lower than 100 miles above 

the earth's surface. As discussed with the Nodestar system, a flat earth approximation is 

also assumed to be appropriate. 

In describing the target motion, a constant velocity model is assumed. In the real 

world this is more than likely an invalid assumption, however this assumption is made for 

this research. The uncertainty in the target's trajectory such as the target accelerating or 
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turning at any time, is a feature of the Kaiman filter that allows us to accurately predict 

the target's motion taking this into consideration. 

3.5.2 Gating and Correlation Threshold 

Gating is used to eliminate observations that are not feasible for data association 

given a target within the gate. If there is a single observation within the gate and this gate 

does not overlap with another target's gate, then a correlation is made between the target 

in the gate and the next observation found within the gate. If there are multiple 

observations within a single gate, further analysis of the observations is made before a 

correlation is formed. Gating logic is therefore used to minimize the number of pairings 

that must be considered for data association. 

In performing track correlation, gating acts as a course test in order to classify the 

target into one of two categories. The first category is that which makes the target a 

potential candidate for updating if that track satisfies the criteria for one or more tracks. 

The second category is for tracks that do not satisfy the gates for existing tracks and 

therefore a new track is initiated [Blackmann, 1986]. 

In using the Kaiman filtering algorithm a gate size was selected such that the best 

results were obtained for the given data set. The gate size was minimized along with the 

correlation threshold parameter in order to maintain the greatest track correlation and the 
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least number of dead tracks generated. Also, it was important to maintain a reasonable 

gate size so that performance does not change with an increase in the number of tracks 

per data set. 

3.5.3 Parameter Estimation 

The parameter file used for Kaiman filtering is shown in detail in Appendix A. 

These parameters are as follows: 

1.   Q = Assumed known covariance matrix Equation 3.6. 

"By appropriately selecting Q, we will minimize the effects of miscorrelation and 

also reduce the unstable tracking region" [Blackman, p. 106] 

Equation 3.6 Covariance Matrix 

Q 
0     0 

0 < 

2. KG = Rectangular Kaiman gating constant which sets the size of the gate 

3. Error Sigma = Standard deviation of filtered estimation error. This parameter 

is a threshold of how much deviation outside the gate we allow and still 

consider a track to correlate with the previous observation. 
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The Kaiman filter parameters of Q, covariance, and KG, gating, were optimized 

along with the error sigma using response surface methodology and Design Expert 

software. A response surface utilizing three factors set at three levels, a 3 design, was 

used to optimize these parameters. Three responses were used: percent correct 

correlation, mean prediction percentile and the number of dead tracks. This process is 

discussed further. 
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4    Response Surface Methodology and KF Parameter Optimization 

In order to compare Kaiman filtering to terrain based tracking, it is important to 

determine the best set of parameters to utilize in Kaiman filtering so that the best results 

for Kaiman filtering can be achieved. In this section we explore the Kaiman filtering 

parameters and find the best operating levels of these parameters to optimize the response 

variables. 

4.1 Design of Experiment 

A user defined model using Design Expert software was created. The model 

consisted of three factors using three levels for each factor and there were three responses 

recorded for each run. Table 4.1 shows the design of the experiment in the actual factors. 
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Table 4.1 Design of Experiment Actual Factors 

Run Q KG Error Sigma 
1 0.1 1.5 20 
2 0.1 1.5 40 
3 0.1 1.5 80 
4 0.1 2.5 20 
5 0.1 2.5 40 
6 0.1 2.5 80 
7 0.1 5 20 
8 0.1 5 40 
9 0.1 5 80 
10 1.5 1.5 20 
11 1.5 1.5 40 
12 1.5 1.5 80 
13 1.5 2.5 20 
14 1.5 2.5 40 
15 1.5 2.5 80 
16 1.5 5 20 
17 1.5 5 40 
18 1.5 5 80 
19 2 1.5 20 
20 2 1.5 40 
21 2 1.5 80 
22 2 2.5 20 
23 2 2.5 40 
24 2 2.5 80 
25 2 5 20 
26 2 5 40 
27 2 5 80 

The design is summarized as a response surface, user defined, 33 design, with 27 

experiments. The design model is quadratic. The actual factors were scaled and 

centered. Table 4.2 shows the design of the experiment in terms of the coded factors. 
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Table 4.2 Design of Experiment Coded factors 

Run Q KG Error Sigma 

1 -1 -1 -1 
2 -1 -1 -0.33333333 
3 -1 -1 
4 -1 -0.428571 -1 
5 -1 -0.428571 -0.33333333 

6 -1 -0.428571 
7 -1 1 -1 
8 -1 1 -0.33333333 
9 -1 1 
10 0.473684 -1 -1 
11 0.473684 -1 -0.33333333 
12 0.473684 -1 
13 0.473684 -0.428571 -1 
14 0.473684 -0.428571 -0.33333333 

15 0.473684 -0.428571 
16 0.473684 1 -1 
17 0.473684 1 -0.33333333 
18 0.473684 1 
19 -1 -1 
20 -1 -0.33333333 
21 -1 
22 -0.428571 -1 
23 -0.428571 -0.33333333 
24 -0.428571 
25 1 -1 
26 1 -0.33333333 
27 1 1 

Table 4.3 summarizes the response variables and the three factors used in the model. 
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Response    Name Obs     Minimum Maximum      Model 

Yl % Corr 27 89.31 

Y2 Mean pred 27 38.06 

Y3 #Dead Tracks 27 214.00 

97.00 

89.43 

1222.00 

Reduced Quadratic 

Reduced Quadratic 

Reduced Quadratic 

Factor Name Low Actual High Actua 1   Low Coded High Cod 

A           Q 0.100 2.00 -1.000 1.000 

B           KG 1.50 5.00 -1.000 1.000 

C            Error 20.00 80.00 -1.000 1.000 

4.2 Model Selection 

Three models were evaluated, one for each response variable. Stepwise 

regression was performed on the full model with alpha to enter equals 0.100 and alpha to 

exit equals 0.100. An analysis was conducted on each of the factors to determine if they 

were significant in the model. Once the appropriate model was selected, an optimization 

on the response variable was performed to find the optimal operating conditions for 

Kaiman filtering. 
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A summary of the three factors and their respective actual high and low levels are 

summarized in Table 4.4. 

Table 4.4 Summary of Factor Levels 

Factor 

KG 

Error Sigma 

-1 Level 

.10 

1.5 

20 

+1 Level 

80 

4.2.1 Response = Mean Prediction Percentile 

The results from stepwise regression and the model selected for the mean 

prediction percentile is as follows: 

Coefficient 

Estimate Prob > |t| R-Squared MSE 

Error Sigma -12.40 <0.0001 0.6072 74.20 

KG -7.22 <0.0001 0.8182 35.78 

Q 4.73 O.0001 0.9099 18.51 

KG * Error Sigma -4.48 O.0001 0.9660 7.30 

Q2 -3.37 0.0184 0.9741 5.84 
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The model is a good fit for the data as can be seen by evaluating Table 4.5. The adjusted 

R2 for this model is 0.968. 

Table 4.5 ANOVA for Mean Prediction Percentile 

Sum of Mean F 

Source Squares DF Square Value Prob > F 

Model 4600.47 5 920.09 157.68 < 0.0001 

Residual 122.54 21 5.84 

Cor Total 4723.01 26 

Root MSE 2.42 R-Squared 0.9741 

Dep Mean 73.63 Adj R-Squared 0.9679 

C.V. 3.28 Pred R-Squared 0.9559 

PRESS 208.48 Adeq Precision 44.374 Desire > 4 

All three factors are significant as determined by the t-test. Equation 4.1 shows the final 

equation for this model in terms of the actual factors. The parameter Q contributes most 

to the model of mean prediction percentile. 

A 
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Equation 4.1 Mean Prediction Percentile in Terms of Actual Factors 

Mean predection percentile    =   86.24 + 12.42 Q - 0.15 KG - 0.16 Error Sigma - 3.73 Q2 

- 0.085 KG * Error Sigma 

Next, the model was examined to determine at what level for the three factors is 

the maximum mean prediction percentile obtained. Figure 4.1 shows the response 

surface and the relationship of Q, KG and mean prediction percentile. 
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DESIGN-EXPERT Plot 

Actual Factors: 

X = Q 83.0282 X 

Y = KG 
77.139 | 

Actual Constants: 71.2499 ' 

Error = 46.67 
-o 
a. 

65.3607 

c 
CO 59.4715 

5.00 

2.00 

1.50    0.10 

Figure 4.1 Mean Prediction Percentile Response Surface 

An optimization of all three parameters gives us the solutions in Table 4.6. 
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Table 4.6 Mean Prediction Percentile Optimal Solutions 

KG Error Sigma Meanpred Desirability 

1.57              20.48 90.3703 1.000 

1.76              20.33 89.6422 1.000 

1.57              20.73            90.298 1.000 

1.61               23.13 89.5208 1.000 

1.90              20.08 89.4638 1.000 

1.96              20.64 89.5108 1.000 

1.51               23.82 89.4411 1.000 

1.70              21.53 89.6027 1.000 

1.61               20.48 90.2883 1.000 

1.50              46.03 79.7832 0.812 

The desireability function, d, for a response being maximized is such that d = 1, or as 

close to 1 as possible, for any predicted value greater than a target response value. 

1 1.64 

2 2.00 

3 1.67 

4 1.64 

5 1.33 

6 1.80 

7 1.52 

8 1.90 

9 1.63 

10 0.70 
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4.2.2 Response = Percent Correct Correlation 

The results from stepwise regression and the model selected for the percent 

correct correlation is as follows: 

Added 

Coefficient 

Estimate Prob > |t| R -Squared MSE 

KG 2.07 O.0001 0.5628 2.55 

Error Sigma 1.28 <0.0001 0.7739 1.37 

KG * Error Sigma -0.85 0.0057 0.8391 1.02 

Error Sigma2 -1.02 0.0268 0.8719 0.85 

The significant result when modeling percent correct correlation is that the term Q 

was found to be insignificant in the model to predict the percent correct correlation (This 

factor was found to contribute most to the mean prediction percentile shown in section 

4.2.1.). The model was found to be a good fit. Table 4.7 shows an adjusted R2= 0.849. 
i 
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Table 4.7 ANOVA for Percent Correct Correlation 

Sum of Mean F 

Source Squares DF Square Value Prob > F 

Model 127.24 4 31.81 37.43 < 0.0001 

Residual 18.70 22 0.85 

Cor Total 145.93 26 

Root MSE 0.92 R-Squared 

Dep Mean 93.97 Adj R-Squared 

C.V. 0.98 Pred R-Squared 

PRESS 26.04 Adeq Precision 

0.8719 

0.8486 

0.8216 

17.242 Desire > 4 

It was found that only two factors, KG and error sigma, are significant as 

determined by the t-test. This model in terms of the actual factors is shown in Equation 

4.2. The KG parameter contributes most to this model for the response percent correctly 

correlated. 

Equation 4.2 Percent Correctly Correlated in Terms of Actual Factors 

% Correct Corr = 83.88 + 1.94 KG + 0.21 Error Sigma- 0.001137 Error Sigma2 - 0.016 

KG * Error Sigma 
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Figure 4.2 shows that as KG varies, the maximum percent correct correlation does not 

change significantly as Q varies. 

DESIGN-EXPERT Plot 

Actual Factors: 

X = Q 97.0502 1 

Y=KG 
96.0134 

Actual Constants: 94.9767 

Error = 46.67 93.9399 

Figure 4.2 Percent Correctly Correlated Response Surface 

The optimal candidate solutions for percent correct correlation are summarized in 

Table 4.8. 
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Table 4.8 Percent Correct CorrelationOptimal Solutions 

Q* KG Error Sigma    % Corr Desirability 

0.46 4.92 59.63 97.0545 1.000 

1.02 4.96 46.97 97.0127 1.000 

3 2.00 4.89 61.57 97.014 1.000 

4 0.84 4.90 59.22 97.0377 1.000 

5 0.15 4.92 63.54 97.0117 1.000 

6 0.89 4.98 64.93 97.0438 1.000 

7 0.82 4.94 51.66 97.0615 1.000 

8 0.18 5.00 60.40 97.1268 1.000 

9 1.80 4.95 48.36 97.0278 1.000 

10 1.19 4.86 56.29 97.0077 1.000 

*Has no effect on optimization results. 

4.2.3 Response = Number of Dead Tracks 

The parameter Q is added to this model because through the stepwise regression 

procedure it was found that Q2 was significant in the model. It is desired that a 

hierarchical model is maintained, therefore Q must remain in the model. The model 

selcted for the percent correct correlation is as follows: 
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Coefficient 

Added Estimate Prob > |t| R-Squared MSE 

KG -258.79 O.0001 0.5356 44373.35 

Error Sigma -200.04 <0.0001 0.8483 15100.02 

KG * Error Sigma 81.41 0.0126 0.8849 11951.18 

Error Sigma2 127.96 0.0089 0.9163 9092.16 

Q2 -98.42 0.0471 0.9309 7860.33 

Q -35.78 0.0868 0.9405 7101.30 

Table 4.9 verifies that the model selected is appropriate given the adjusted R   = 0.923. 

Table 4.9 ANOVA for Number of Dead Tracks 

Sum of 

Source          Squares DF 

Model      2.247E+06 6 

Residual      1.420E+05 20 

Cor Total      2.389E+06 26 

Root MSE 84.27 

Dep Mean 632.44 

C.V. 13.32 

Mean F 

Square Value 

3.744E+05 52.73 

7101.30 

Prob > F 

< 0.0001 

PRESS       2.443E+05 

R-Squared 0.9405 

Adj R-Squared 0.9227 

Pred R-Squared 0.8977 

Adeq Precision 23.604    Desire > 4 
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All factors are significant as determined by the t-test. The final equation, 

Equation 4.3, for this model in terms of the actual factors is as follows: 

Equation 4.3 Number of Dead Tracks in Terms of Actual Factors 

\2 #Dead Tracks = 1876.14 + 242.18 Q -220.24 KG -25.94 Error Sigma- 133.26QZ + 0.14 

Error Sigma2 + 1.55 KG * Error Sigma 

Figure 4.3 shows the relationship between KG, Q and the number of dead tracks. 
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DESIGN-EXPERT Plot 

Actual Factors: 

X = Q 862.996 T 

Y = KG 
693.996 

Actual Constants: 
524.996 

Error = 46.67 
01 355.996 
o 
CO 

1- 

(0 
a> 
O 

186.997 

5.00 

2.00 

1.50    0.10 

Figure 4.3 Number of Dead Tracks Response Surface 

The criteria for parameter optimization is: 

1. Q, KG, and error sigma are within range 

2. Number of dead tracks is minimized 
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The desireability function, d, for a response being minimized is such that d = 1 for any 

predicted value less than a target response value. This criteria results in the solutions 

found in Table 4.10. 

Table 4.10 Number of Dead Tracks Optimal Solutions 

Q KG Error Sigi na   #Dead Tracks Desirabi 

1 2.00 5.00 64.58 144.596 1.000 

2 2.00 5.00 62.52 144.97 1.000 

3 2.00 5.00 62.78 144.975 1.000 

4 1.99 5.00 64.92 146.221 0.999 

5 2.00 4.97 64.91 148.524 0.997 

6 0.10 5.00 63.99 216.062 0.934 

7 0.10 4.96 61.23 221.564 0.929 

8 1.63 5.00 79.84 269.538 0.884 

9 0.45 5.00 62.92 275.597 0.879 

4.3 Final Parameter Selection 

In optimizing all three responses, the optimal parameters for Kaiman filtering 

given the high data rate are shown in Table 4.11. 
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Table 4.11 KF Optimal Solutions 

Q       KG Error Sigma    % Corr Mean pred   #Dead Tracks Desirability 

1 1.99 4.65 55.15 96.7869 64.9258 205.998 1.000 

2 1.97 4.93 46.11 96.9584 68.8418 209.168 1.000 

3 1.98 4.56 62.68 96.6956 61.2593 203.404 1.000 

4 1.98 4.98 44.70 96.9773 69.4571 207.43 1.000 

5 1.82 4.85 62.00 96.9728 60.3462 211.487 1.000 

6 0.10 4.94 46.21 96.9638 60.0001 270.35 0.944 

7 0.10 5.00 44.24 96.9903 60.8904 271.499 0.943 

8 0.52 4.86 54.13 97 60 315.341 0.899 

9 0.42 4.99 44.87 97 63.9263 324.582 0.890 

Tradeoffs must be made to improve one response while accepting a lower standard in 

another response. The Kaiman filter used in this research is a fixed parameter KF. Using 

response surface methodology, these parameters were optimized. In selecting the KF 

parameters, the order of importance of the responses is minimizing the number of dead 

tracks, maximizing the percent correct correlation and maximizing mean prediction 

percentile. The best parameters that meet this goal are: 

Q = 1.98 

KG-4.56 

Error Sigma = 62.6 
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5     Bayesian Inference 

Tracking is a statistical estimation problem considered to be best viewed as a 

Bayesian inference problem. The Bayesian point of view considers additional 

information such as known information and common sense. Such known information 

can consist of the aircraft flying dynamics, terrain-target interaction information or a 

known target goal or mission. Common sense such as a tank cannot traverse a steep 

incline, or boats avoid land help us to determine additional information that we may wish 

to incorporate into the model in order to narrow the tracking scope. When this 

information is processed properly, the possible states of the unknown are more defined. 

"Bayesian statisticians use prior distribution for unknown parameters even if subjectivity 

is involved" [Stone, et al., 1999, p.31]. Kaiman filtering is cited as a special case of 

Bayesian filtering [Stone et al., 1999]. 

The Bayesian inference approach to detection and tracking is not common in the 

data fusion and tracking community because it is computationally intensive and requires 

large storage space. Technological advances in computing however allows the 

exploration of more complex algorithms such as those algorithms using Bayesian 

inference. One advantage of Bayesian inference is the use of negative information. 

Kaiman filters cannot account for negative information. Negative information requires 

the existence of a model for the probability of detection. Bayesian inference incorporates 

prior distribution information as well as the number of targets, their states and how they 
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change their states. The sensor information is converted into likelihood functions defined 

on the target space [Stone et al., 1999]. 

5.1 Use of Likelihood Functions 

"Bayesian inference is mathematically precise and uses likelihood functions to 

represent target tracking information and likelihood functions are the most natural way of 

representing information added into a tracker. The likelihood functions replace and 

generalize the notion of contact used in linear Gaussian trackers" [Stone et al., 1999, 

P.33]. To combine two simultaneous observations with independent errors, multiply the 

likelihood functions. The likelihood function L for the random variable X and 

observation Y = y is defined in Equation 5.1. 

Equation 5.1 Likelihood Function 

L(y/x) = Pr{Y=y\X=x} for x e S 

Where: 

Pr = probability density on the measurement space 

x e S = random variable x over the space S 
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Bayesian inference uses Baye's rule to compute the posterior distribution on the 

target space. The Bayesian approach has withstood the test of time and is explored as a 

viable algorithm for tracking multiple targets in a sparse data environment. 

5.2 Advantages of Bayesian Inference 

The advantages of using Bayesian inference from Stone, et al, 1999, are 

summarized below. One can see that the use of Bayesian inference appears to be well 

suited for this problem. 

1. Provides a consistent method of reconciling prior and current information. 

2. Follows rules and obtains a Baye's optimal estimate 

3. Posterior distribution on X given Y = y (current observation) is the starting 

point 

4. Baye's theorem is naturally recursive 
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6    Terrain Based Tracking (TBT) Algorithm 

Nougues and Brown have developed TBT for ground based targets using local and 

remote information and discovered that TBT performed slightly better than KF on sample 

data. Two constraints to the TBT problem were identified as 1) goal regions must be 

identified and 2) sensor report frequency must allow enough time for the algorithm to 

produce results prior to receiving the next observation and be able to integrate the targets 

behavior into its prediction. The TBT algorithm is based on a discrete state-space and 

uses the Arclnfo GIS software for terrain representation with a resolution of 20 meters 

per square pixel. 

For ground targets moving on roads, the location densities take the shape of the 

roads. "Trying to fit a mixture of Gaussians to these densities would require an excessive 

number of kernels to provide a good approximation...at the core of TBT is a set of 

propagation equations used to model target motion between sensor reports" [Nougues, 

p. 106]. 

6.1 Problem Statement 

Maneuvering targets usually result in a low data rate environment and also exhibit 

non-Gaussian properties.   The terrain based tracker uses Bayesian inference and is an 
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appropriate tracker when the target or data environment exhibits these properties. Terrain 

based tracking has been successfully applied to ground based targets. The issue of air 

target data and the feasibility of terrain based tracking when given air targets is 

examined. Once the feasibility of applying TBT to air targets is established, the sparse 

air target data scenario will be applied to terrain based tracking and compared to the 

Kaiman filtering method. 

6.2 TBT Model 

The filtering function in TBT, Equation 6.1, uses a Bayesian approach in the discrete 

state space and accounts for the stationary and moving probability densities. 

Equation 6.1 TBT Filtering Function and Baye's Rule 

p =Mk)lz\-\P[4)Wim 

Where: 

p[zk /x(k)\= reported Gaussian density of zk sensor report given x(k) observation 

p[x(k)/zk \ = updated density of x(k) observation given zk sensor report 
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6.2.1 Benefits of TBT 

TBT has benefits that makes the use of terrain based tracking well suited for this 

problem. 

1. The posterior distribution on X given Y = y (current observation) is the 

starting point 

2. Baye's Theorem is naturally recursive 

6.2.2 TBT Assumptions 

The following assumptions were made in the application of TBT to the air target 

data set: 

1. The relative stationary inertia for the air targets is zero 

2. Speed parameter = .46 (This was the calculated average speed parameter) 

6.2.3 Probability Distributions 

TBT involves non-Gaussian densities. This is ideal for non-linear type tracking 

and low data rate environments. TBT evaluates the probability of a target moving in one 

of five directions. Table 6.1 summarizes the five directions. 
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Table 6.1 Relative Motion Inertia by Direction Difference 

Direction Degrees 

P0 0 

PI 45 

P2 90 

P3 135 

P4 180 

The probabilities differ for each direction based on the underlying terrain. The 

probabilities for a ground target moving over rough terrain, open terrain, primary or 

secondary roads, were determined by Nougues for ground target tracking. For this thesis, 

the probabilities over open and no go, i.e. rough terrain were examined and developed for 

air targets. These probabilities will be presented later. 
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7    TBT Modifications for Air Targets 

TBT was initially developed for the use of tracking ground targets. The following 

areas discuss what modifications had to be made in order to perform air target tracking 

using TBT. 

7.1 Combat Information Processor (CIP) 

The terrain database was enlarged to incorporate as much of the air target data as 

possible. The air target data covers much more terrain than the ground targets.   The road 

network and terrain data file was also enlarged on the CIP display as well as within the 

CIP Tracker program file. The minimum number of cells to expand the grid when 

tracking air targets also had to be enlarged due to the higher speeds of the air targets and 

the greater distances being covered between sensor reports. 

Additionally, the time projection algorithm was modified by increasing the target 

speed and decreasing the TBT propagation time step. 

7.2 Data Preparation 

The air target data covers more terrain than the ground target data over the same 

time period. The air targets travel inside and out of the terrain box whereas the ground 
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targets maneuver within the box for the entire time period. Because of the limited size of 

the terrain box, the air target data traveling outside of this box had to be discarded 

because TBT does not function outside the terrain box. 

The data file was modified as follows. The date-time group was converted into 

seconds, the z-direction position was eliminated as we are only considering the two 

dimensional problem, and the velocity in the x and y direction was calculated by 

Equation 7.1 and Equation 7.2. 

Equation 7.1 X-Direction Velocity 

V = 
\f2      *l J 

Equation 7.2 Y-Direction Velocity 

y,= 
V    2        1   J 

The data was plotted on the CIP Tracker by plotting the true observations over the 

entire time period. The ground target reference point was used initially however this 

caused all of the air targets to appear outside the terrain box. The reference point was 

therefore adjusted so the air targets maneuvered within the National Training Center road 
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networks and associated terrain box. The new reference point for the air targets was 

found to be: 

Easting X 490000 

Northing Y 3810180 

This reference point was validated by plotting five different air target data sets 

from different days and examining the target paths. This reference point fit all the data 

sets and seems to be accurate as far as what type of missions the air targets could possibly 

be carrying out. 

A second set of tests was conducted on three sparse data sets. The sparse data 

sets were created by using data points every 10, 20 and 40 seconds. Sparse data is 

therefore defined for this experiment as data received greater than or equal to every 10 

seconds. A plot of the 10 second data is shown in Figure 7.1: 
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Figure 7.1 Plot of Sparse Data Set 

7.3 Parameter Estimation 

Two areas of parameter estimation were examined for optimal performance of the 

terrain based tracker. The first area examined was the parameters for the relative motion 

inertia by direction difference probabilities. The stationary inertia probability parameters 

were set to zero for the air targets and the no go and open terrain was considered. Once a 
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good set of parameters were determined, the error sigma parameter was optimized. 

Appendix B shows the parameter file used in terrain based tracking. 

7.3.1 TBT Relative Motion Inertia by Direction Difference Probabilities 

The relative motion inertia by direction difference probability parameters were 

adjusted for the air targets by running several experiments to determine the set of 

parameters that yield the best result for tracking the air targets over terrain. 

It was found that the air targets, all fixed wing aircraft, do not utilize the road 

network as frequently as the ground targets, but rather use much of the no go terrain 

(mountainous terrain) in most cases and try to avoid the open terrain areas by following 

alongside the no go areas. The targets appeared to be flying into the open areas that are 

known to be ranges, and are therefore flying into selected open areas when dropping 

bombs. 

The set of parameters found to work best in the air data case are summarized in 

Table 7.1. These values were developed through extensive experimentation. 
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Table 7.1 Parameters for Relative Motion Inertia by Direction Difference 

PO PI P2 P3 P4 Src Dst 

50 40 30 20 10 NO GO NO GO 

50 40 30 20 10 NO GO OPEN 

50 40 30 20 10 NO GO Sec Road 

50 40 30 20 10 NO GO Pri Road 

50 40 30 20 10 Open NO GO 

500 50 10 0 0 Open Open 

400 250 100 20 1 Open Sec Road 

600 450 250 50 1 Open Pri Road 

50 40 30 20 10 Sec Road NO GO 

50 35 20 10 1 Sec Road Open 

1000 500 150 50 1 Sec Road Sec Road 

2000 1000 700 300 5 Sec Road Pri Road 

50 40 30 20 10 Pri Road NO GO 

10 9 8 1 0 Pri Road Open 

150 80 40 10 1 Pri Road Sec Road 

1500 450 150 35 1 Pri Road Pri Road 
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7.3.2 TBT Error Sigma Parameter Estimation 

Several experiments were conducted to determine the optimal error sigma that causes 

the best performance for the terrain based tracker. Three replicates at three levels were 

conducted and the performance using the total number of dead tracks was examined. It 

was found that the best error sigma for TBT is 80, which resulted in 66 final number of 

dead tracks for the high data rate environment. 



58 

8     Target Tracking 

8.1 Single Target Tracking 

In order to conduct multiple target tracking, we examine the single target tracking 

case and break the multiple target problem into single target problems. "The simplest 

multiple target tracking systems use sequential data processing and nearest neighbor 

association rule" [Blackman, 1986, P.83]. The basic recursion for single target tracking, 

Equation 8.1, consists of an initial distribution, the motion update and an information 

update [Stone, et al., 1999, p. 61]. 

Equation 8.1 Basic Recursion for Single Target Tracking 

(Initial Distribution) p(tQ,s0) = qQ(s0) for s0 e S 

For k > 1 andsk e S, (Motion Update) p~(tk,sk) = jqk(sk \sk_l)p(tk_l,sk_1)dsk_l 

(Information Update) p(tk,sk) = —Lk(yk \sk)p'(tk,sk) 

Where: 

tk = Time k 

Sk = State k 

Lk = Likelihood function 

C = Constant that normalizes p(tk,») to a probability distribution 

yk = observation k 
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If no observations are detected than there is no information update.   Only a 

motion update is conducted. The motion update accounts for the transition from tk-i to tk. 

The errors or probability distributions do not need to be Gaussian.   When they are not 

Gaussian, we have non-linear tracking. 

8.2 Multiple Target Tracking: 

Multiple target tracking (MTT) is difficult because we must determine which target 

generated each radar response. This process is known as data association. Single targets 

using non-linear tracking methods are applied to the multiple target problem. Data 

association and state estimation are the principle activities of multiple target tracking 

[Stone, et al. 1999]. 

Step 1) Associate contact or observation with current targets. 

Step 2) Observations associated with each target are used to estimate the targets' 

state independent of the other targets. 

The extended Kaiman filter was formulated to track multiple targets in a high data 

rate environment. The multiple target tracking problem can be modeled in two parts: 1) 

the data association problem and 2) The state estimation problem. The number of targets 
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is estimated and false alarms are determined (False alarms are unlikely when air traffic 

control is used due to the use of aircraft transponders). The Joint Directors of 

Laboratories Fusion Sub Panel refers to the process of conducting MTT as level 1 data 

fusion problem [Stone, et al. 1999]. 

A non-linear modification to the Kaiman filter algorithm was formulated by 

Yeddanapudi in 1997. This algorithm is called the interactive multiple model (IMM) 

Kaiman filter. Two models considered for its use are the constant velocity model and the 

maneuver model. This model is used in high data rate environments with small numbers 

of maneuvers per contact [Stone, et al. 1999]. 

Typical MTT system assumptions are summarized in Table 8.1 

[Stone, et all 999, P.26]: 

Table 8.1 Classification of Tracking Systems 

Target Assumptions Information Assumptions 

Number 0-N 
Sensor Observations Linear 

Measurment Error Gaussian 

Motion Model Gaussian 
Type of Sensor data Contact Output 

False Alarms yes 
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9     Sparse Data, Multiple Target Tracking 

The same data set analyzed above was transformed into a sparse data set with 

observations every 10 seconds. Both KF and TBT were run and the best parameters were 

found that yielded the best results in the response variable mean prediction percentile, 

percent correctly correlated and number of dead tracks. 

9.1 Kaiman Filtering of Sparse Data 

The same procedure to optimize the KF parameters was repeated using response 

surface methodology. The same tests were run with the same design of experiment from 

the tests performed with the full data set.    The optimization was then performed on the 

three responses. 

Figure 9.1 shows the Kaiman filter performing sparse data tracking over the 10 

second interval data. Figure 9.1 shows four tracks. The total length of the path indicates 

the correlated movement of the target. The rectangles are the Kaiman filter prediction 

gates. 
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Figure 9.1 Plot of Kaiman Filtering and Sparse Data Tracking 

9.1.1    Response = Percent Correctly Correlated 

The reduced model obtained from stepwise regression was examined. It was 

found that the interaction between Q and error sigma was significant. As a result, both Q 

and error sigma were added back into the model in order to maintain a hierarchical 

model. It was found that Q and error sigma alone are not significant in the model, 

however their interaction is significant as found as a result of conducting a t-test. This 

model is as follows: 
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Coefficient 

Factor Estimate DF Prob > |t| 

Q 0.72 1 0.6882 

KG 2.66 1 0.1493 

Error Sigma 4.75 1 0.0135 

Q*KG 4.57 1 0.0379 

The best model for percent correctly correlated is summarized in Table 9.1. The 

adjusted R2 = 0.277, however our model is significant as the Prob > F is less than 0.05. 

Table 9.1 ANOVA for Percent Correctly Correlated Sparse Data 

Sum of Mean 

Source Squares       DF        Square Value 

Model 815.43 4 203.86 3.48 

Residual        1287.10 

PRESS 1956.74 

22 

Cor Total 2102.53        26 

Root MSE 7.65 

Dep Mean 54.56 

C.V. 14.02 

58.50 

R-Squared 0.3878 

Adj R-Squared 0.2765 

Pred R-Squared 0.0693 

Adeq Precision 7.280 

Prob > F 

0.0238 

Desire > 4 
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The parameter Q contributes most to our model. The final equation, Equation 9.1, in 

terms of the original factors is: 

Equation 9.1 Percent Correct Corelation in Terms of Actual Factors: 

% Correctly Correlated = 32.22 + 9.68 Q + 4.4 KG + 0.16 Error Sigma - 2.75 Q *KG 

Figure 9.2 shows the relationship between Q, KG, error sigma and percent correct 

correlation. In order to have the highest percent correctly correlated we should select Q 

and error sigma at the high level and KG at the low level or KG and error sigma high and 

Q low. Table 9.2 summarizes the optimal solutions obtained for the respective values of 

Q, KG and error sigma in order to have the highest percent correctly correlated. 
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DESIGN-EXPERT Plot 

Actual Factors: 

X = KG 

Y = Q 

Actual Constants: 

Error = 80.00 

66.5144 

62.9014 

59.2885 

55.6755 

52.0626 

2.00 

5.00 

0.10    1.50 

Figure 9.2 Percent Correct Correlation Response Surface 
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Table 9.2 Sparse Data KF Optimal Solutions 

Q KG Error Sigma %Corr Desirability 

1 0.10 5.00 80.00 66.5143 0.941 

2 0.11 5.00 80.00 66.4687 0.940 

3 0.10 5.00 79.13 66.3765 0.938 

4 0.10 4.91 80.00 66.1482 0.932 

5 0.25 4.69 80.00 64.7686 0.896 

6 0.18 4.42 80.00 63.9337 0.874 

7 0.62 4.74 80.00 63.7034 0.869 

8 2.00 1.50 79.92 62.6147 0.840 

9.1.2   Response = Mean Prediction Percentile 

The reduced model, obtained from using stepwise regression, was examined. 

Coefficient 

Factor Estimate DF Prob > |t| 

Q 2.79 1 0.0097 

Error Sigma 1.09 1 0.2974 

Q* Error Sigma 3.22 1 0.0120 
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The KG parameter was found not to be significant in the model predicting mean 

prediction percentile. Table 9.3 verifies that the model selected is a good fit as Prob > F 

= 0.006. The model has an adjusted R2 = 0.335. 

Table 9.3 ANOVA for Mean Prediction Percentile Sparse Data 

Sum of Mean 

Source 

Model 

Residual 

Cor Total 

Squares        DFSquare 

301.10 3100.37 

429.67 

730.78 

2318.68 

26 

Value 

5.37 

Prob > F 

0.0060 

Root MSE 4.32 R-Squared 0.4120 

Dep Mean 20.79 Adj R-Squared 0.3353 

C.V. 20.79 Pred R-Squared -0.1308 

PRESS 826.38 Adeq Precision 7.233 Desire > 4 

Equation 9.2 shows the model in terms of the actual factors. The Q parameter contributes 

most to the prediction of mean prediction percentile. 
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Equation 9.2 Mean Prediction Percentile in Terms of Actual Factors: 

Mean Prediction Percentile = 21.56 - 2.71 Q -0.083 Error Sigma   + 0.11 Q * Error 
Sigma 

Figure 9.3 shows the relationship between Q and the number of dead tracks. It is 

noted that KG has no affect on the model. In order to achieve the maximum mean 

percent prediction, Q and error sigma should be selected at the high level. 
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DESIGN-EXPERT Plot 
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Figure 9.3 Mean Prediction Percentile Response Surface 

Table 9.4 shows the optimal solutions for the given values of Q, KG and error sigma. 
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Table 9.4 Mean Prediction Percentile Optimal Solution 

Q KG*   I >ror Sigma Mean Pred Per cent      Desir 

1 1.97 1.81 78.51 27.2236 1.000 

2 1.98 3.85 78.46 27.2929 1.000 

3 1.97 1.53 79.73 27.4199 1.000 

4 1.99 4.32 78.02 27.2852 1.000 

5 1.97 4.71 79.65 27.3761 1.000 

6 1.95 2.36 77.97 27.0087 1.000 

7 1.91 4.03 79.86 27.0619 1.000 

8 1.97 3.19 78.01 27.1759 1.000 

9 0.10 1.57 20.00 19.8669 0.743 

10 0.10 2.64 20.00 19.8669 0.743 

*Has no effect on optimization results. 

9.1.3    Response = Number of Dead Tracks 

The reduced model, obtained from using stepwise regression, was examined. 

Coefficient 

Factor         Estimate DF Prob > |t| 

rror Sigma    -40.89 1 0.0021 
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It was found that error sigma is the only significant factor in predicting the 

number of dead tracks. The best model is summarized in Table 9.5 and has an adjusted 

R2 = 0.293. 

Table 9.5 ANOVA for Number of Dead Tracks Sparse Data 

Sum of Mean 

Source Squares DF Square 

Model 31214.88 1 31214.88 

Residual 66173.79 25 2646.95 

Cor Total 97388.67 26 

Value       Prob > F 

11.79 0.0021 

RootMSE      51.45 

Dep Mean       257.78 

C.V. 19.96 

PRESS    79041.76 

R-Squared 0.3205 

Adj R-Squared 0.2933 

Pred R-Squared 0.1884 

Adeq Precision 5.841 Desire > 4 

Equation 9.3 shows the model in terms of the actual factors. Error sigma is the only 

factor used to predict the number of dead tracks. 

Equation 9.3 Number of Dead Tracks in Terms of Actual Factors: 

# Dead Tracks = 321.39 - 1.36 Error Sigma 
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Figure 9.4 shows the relationship between error sigma and the number of dead tracks. 

DESIGN-EXPERT Plot 

Actual Factors: 294.127 
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Figure 9.4 Number of Dead Tracks Response Surface 

Table 9.6 shows the optimal solutions for the given values of error sigma: 
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Table 9.6 Optimal Solutions 

Q* KG* Error Sigma # Dead Tracks Desirability 

1 1.68 1.56 80.00 212.341 0.874 

2 0.47 4.62 80.00 212.341 0.874 

3 0.80 2.64 80.00 212.341 0.874 

4 1.84 2.62 80.00 212.341 0.874 

5 1.55 2.36 80.00 212.341 0.874 

6 1.36 3.12 80.00 212.341 0.874 

7 1.09 2.18 80.00 212.341 0.874 

8 1.86 1.56 80.00 212.341 0.874 

9 1.44 2.53 80.00 212.341 0.874 

10 1.34 3.88 80.00 212.341 0.874 

*Has no effect on optimization results. 

Optimizing for all three response variables yields the solutions found in Table 9.7. The 

best two solutions, solution 1 and 5, show error sigma at the high level, Q at the high and 

low level and KG at the low and high level. 
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Table 9.7 KF Parameters Optimal Solutions 

Q KG Error Sigma % Corr   Mean Pred # Dead Tracks Desirability 

1 2.00 1.50    80.00     62.628      27.6254 199.973 0.884 

2 2.00 1.50    79.48     62.5403     27.5448        200.708 0.882 

3 1.18 5.00    80.00     62.1466    22.42 200.79 0.828 

4 1.86 4.65     80.00     59.6248    26.7502        217.799 0.826 

5 0.74 5.00     80.00      63.9364     19.6228 188.778 0.825 

When in a sparse data environment, KF doesn't do a very good job as expected, 

however the best results can be achieved using the following parameters: 

Q = 0.74 

KG = 5 

Error Sigma = 80 

This is a slight change from the high data rate parameters where we found Q to be at the 

high level. 

9.2 Terrain Based Tracking of Sparse Data 

The full data set was made sparse by keeping the observations at 10, 20 and 40 

second intervals. Figure 9.5, Figure 9.6, and Figure 9.7 show terrain based tracking at the 

10 second interval. 
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Figure 9.5 TBT and Sparse Data Tracking #1 

These figures show two targets traveling together.  Figure 9.5 shows that we are 

about to lose correlation with track 4 as we see the initiation of track 6. 
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Figure 9.6 TBT and Sparse Data Tracking #2 

Figure 9.6 shows that we are still tracking track 5 and we are about to lose correlation 

with track 6. A new track is being initiated as track 7. Figure 9.7 shows that we have 

tracked track 5 without having to initiate any new tracks and we have tracked the other 

target with only initiating one additional track 
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Figure 9.7 TBT and Sparse Data Tracking #3 

It is important to utilize the percent correctly correlated statistic and mean prediction 

percentile when comparing results across the different data sets and using one 

methodology. The sparse data set has a reduced number of sensor reports and therefore 

will always result in fewer numbers of dead tracks.   However, when comparing the same 

data set between the two methodologies, we make use of all three statistics.   TBT has the 

ability to maintain track correlation over an extended time period while receiving sparse 

sensor reports. We could also compute the percentage of dead tracks and use this statistic 

for our comparison. 
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10 Performance Evaluation of the Tracking Systems 

Table 10.1 summarizes the performance of the Kaiman filter and the terrain based 

tracker for the full data set. It can be seen that the TBT method has a slightly higher 

percent correct correlation and much lower number of dead tracks, and a lower mean 

prediction percentile. Ideally, the percent correct correlation and mean prediction 

percentile should be as high as possible and the number of dead tracks should be as low 

as possible. 

Table 10.1 Tracker Performance Summary with Full Data Set 

Tracker %Correct 

Correlation 

Mean 

Prediction 

Percentile 

# of Dead 

Tracks 

Kaiman filter 97.0% 90.0 144 

TBT 98.6 % 31.6 66 

10.1 Kaiman Filtering Correlation 

The Kaiman filter performed below that of the terrain based tracker when using 

the complete data set and the sparse data set.   This was as expected given the non-linear, 
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non-Gaussian nature of the data set and the known fact that Kaiman filtering is not well 

suited for this type of data. KF correlations were well over 95% when using the full data 

set. The KF methodology produced 144 dead tracks. This is poor performance 

considering the data set had only 10 real targets in the data set. 

10.2 Terrain-Based Tracking Correlation 

The terrain based tracker performed slightly better in percent correctly correlated 

and significantly better in the number of dead tracks. TBT always performs lower in 

mean prediction percentile than KF. This is due to the fact that TBT considers movement 

in one of five directions and utilizes intelligent target behavior which leads to a higher 

percent correctly correlated. The mean prediction percentile for TBT is lower than that 

for Kaiman filtering in all cases [Bovey, 2000]. 

10.3 Conclusions 

The terrain based tracker out performed the Kaiman filter in predicting target 

location in a high data rate environment. While this is a strength of Kaiman filtering, the 

benefits of applying Bayesian inference and utilizing the underlying terrain provides a 

greater overall benefit to target tracking than that which Kaiman filtering can provide. 
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11 Sparse Data Performance Evaluation of the Tracking Systems 

Table 11.1 summarizes the performance of the Kaiman filter and the terrain based 

tracker for the sparse data set where sensor reports were received every 10 seconds. 

Additionally, four tracks were removed from the data set because they were located on 

the edge of our terrain file. Given the sparse data scenario, TBT continues to propagate 

until the next observation is received. The targets near the edge of the terrain file were 

propagating outside the terrain file causing TBT to shut down. To avoid this problem, we 

eliminated the targets at the edge of the terrain data file. 

Table 11.1 Tracker Performance Summary with 10 Sec Sparse Data Set 

Tracker %Correct 

Correlation 

Mean 

Prediction 

Percentile 

# ofDead 

Tracks 

Kaiman filter 63.93% 19.62 188 

TBT 66.85% 1.35 151 

It was found that TBT out performed Kaiman filtering once again.   TBT has a slightly 

higher percent correct correlation and 29 fewer dead tracks. 
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Next the data file was made sparse, every 20 seconds. Table 11.2 summarizes the 

performance of the Kaiman filter and the terrain based tracker for the 20 second sparse 

data set. 

Table 11.2 Tracker Performance Summary with 20 Sec Sparse Data Set 

Tracker %Correct 

Correlation 

Mean 

Prediction 

Percentile 

# of Dead 

Tracks 

Kaiman filter 52.99% 31.35 105 

TBT 63.59% 2.57 83 

A slight drop in the percent correctly correlated is seen with TBT when going from 

10 seconds to 20 seconds. Kaiman filtering however has a more significant change in the 

percent correctly correlated when comparing 10 and 20 second interval data sets. 

Next the data file was made sparse, every 40 seconds. Table 11.3 summarizes the 

performance of the Kaiman filter and the terrain based tracker for the 40 second sparse 

data set. 
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Table 11.3 Tracker Performance Summary with 40 Sec Sparse Data Set 

Tracker 
%Correct 

Correlation 

Mean 

Prediction 

Percentile 

# ofDead 

Tracks 

Kaiman filter 34.59% 0% 73 

TBT 58.92% 9.66 46 

Next the data file was made sparse, every 60 seconds.  Due to the small number of 

data points remaining, 115, no correlations could be made using KF or TBT. 

11.1 Kaiman Filtering Correlation 

The performance of the KF falls as the interval between observations increases 

from 10 to 20 to 40 seconds. This verifies what was learned from reading the literature 

and shows that Kaiman filtering is not well suited for the sparse data environment. 

11.2 Terrain Based Tracking Correlation 

The TBT parameter file was adjusted for the sparse data set in order to perform 

tracking in real time. The full data set performed TBT in 0.1 second time step intervals. 

This worked fine given the high data rate of one second. When utilizing the sparse data 
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sets however, the time step had to be increased in order to keep the prediction process 

ahead of real time. It was found that 0.1 second intervals caused the tracker to slow 

down considerably in order to propagate the densities every 0.1 time steps. This 

parameter was changed to 0.8 second time steps and resulted in a decreased prediction 

time so that TBT predicts ahead of the next observation being received. This change in 

parameter did not significantly affect the performance of TBT. 

It can be seen that the performance of TBT falls slightly from the 10 second 

observation interval to the 20 second interval, however TBT still out performs the KF 

method. This verifies that a Bayesian inference method is a viable method and improves 

upon the current tracking methods. 

11.3 Conclusions 

Terrain based tracking helps improve tracking ability given both a high and low data 

rate environment over the Kaiman filter methodology when using the sample data sets. 

Table 11.4 and Table 11.5 summarizes the performance of TBT and KF given the three 

sparse data files. No results were obtained for the 40 second interval, error = 80 in TBT. 

This is most likely due to propagating outside the terrain box. 
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Table 11.4 TBT Sparse Data Performance 

TBT 10 Second Interval 20 Second Interval 40 Second Interval 

Error Sigma 
% Corr 

correlation 

Mean 
Prediction 
Percentile 

«Dead 
Tracks 

% Corr 
correlation 

Mean 
Prediction 
Percentile 

#Dead 
Tracks 

% Corr 
correlation 

Mean 
Prediction 
Percentile 

#Dead 
Tracks 

20 60.06 0.72 184 57.07 1.67 100 57.3 9.16 52 
40 61.72 0.96 172 58.42 2.74 96 58.92 9.66 46 
80 66.85 1.35 151 63.59 2.57 83 No Results 

Table 11.5 KF Sparse Data Performance 

KF 10 Second Interval 20 Second Interval 40 Second Interval 

Error Sigma 
% Corr 

correlation 

Mean 
Prediction 
Percentile 

#Dead 
Tracks 

% Corr 
correlation 

Mean 
Prediction 
Percentile 

#Dead 
Tracks 

% Corr 
correlation 

Mean 
Prediction 
Percentile 

#Dead 
Tracks 

20 55.76 20.00 252 39.95 0.56 169 30.27 0 85 
40 63.11 20.14 205 45.65 21.28 128 31.89 0 82 
80 68.79 26.75 162 54.08 22.42 101 34.59 0 73 

Figure 11.1 and Figure 11.2 depicts the graphical results 



68 

66 

c64 
o 
1 62 
8 
8 60 

o 
ü 

58 

5? 56 

54 

52 

85 

TBT Performance 
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Figure 11.1 TBT Graphical Performance 

Better results are obtained in the percent correct correlation in TBT and KF as the error 

sigma is increased. 

KF Performance 

Figure 11.2 KF Graphical Performance 
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In comparing TBT and KF, it can be seen that as we increase the error sigma the 

number of dead tracks decreases for both methods. Figure 11.3 shows us how TBT 

conducts sparse data tracking with fewer number of dead tracks than KF as we change 

error sigma. 

TBT Vs. KF 

20 40 

Error Sigma 

TBT 10 sec 

KFIOsec 
TBT 20 sec 

H*«~KF20sec 
-*-TBT40sec 
-•-KF40sec 

Figure 11.3 TBT Vs KF Performance 
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12 Summary and Conclusions 

12.1 Summary 

The TBT algorithm is a viable method of tracking air targets in the future given 

the computing power of today's computers. More importantly, these computers will fit in 

existing hardware. While terrain based tracking and Bayesian inference is currently used 

in the Navy and Coast Guard systems, there is also future potential use for terrain based 

tracking and Bayesian inference in air target tracking for military and civilian use. 

12.2 Contributions 

This thesis contributes to the knowledge base of multiple target tracking in the 

following areas: 

1. The development of a test environment 

2. The extension of the terrain based tracker for the use of tracking air targets 

3. The optimization of Kaiman filtering parameters using response surface 

methodology 

4. The test and evaluation of Kaiman filtering and terrain based tracking 
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Two test environments were developed; a high data rate environment and a sparse 

data environment. These environments were simulated on an Ultra-2 Unix computer 

given a terrain database represented in the Arclnfo GIS software, the combat information 

processor and the cipTracker program. 

The TBT program was modified in order to support the tracking of air targets. 

First, the goal regions for air targets were identified. A new reference point was found to 

apply to the air target data.   Probabilities for an air target operating in no go and open 

terrain were developed and tested over multiple air target data sets and the stationary 

inertia probabilities were set to zero. Next, the CIP was modified to incorporate the 

entire terrain database and the expanded road network. Finally, it was found that TBT is 

optimized for high levels of error sigma. 

Response surface methodology was used to optimize the KF parameters in both 

the high data rate environment and the sparse data environment. All three responses were 

modeled in both environments. The high data rate environment resulted in models with 

higher adjusted R2. The sparse data environment models resulted in lower adjusted R2 

but we could still find relationships between the factors and were able to optimize the 

parameters. The optimal parameters for each environment differed slightly in parameter 

Q. The high data rate environment found Q at the high level to be optimal, while the 

sparse data environment found Q at the low level to be optimal. This is not significant as 

we are comparing KF to TBT and are really interested in the number of dead tracks when 
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comparing the two methods. Error sigma was the only significant KF parameter when 

minimizing the number of dead tracks in the sparse data environment model. 

The testing and evaluation of KF and TBT was conclusive in finding that TBT 

performs better than KF in both the high data rate environment and the sparse data 

environment given the sample data sets. Tests were run over 10, 20, and 40 second data 

intervals and found that KF performance is reduced significantly as the interval between 

sensor reports is increased. TBT on the other hand performs consistently in spite of the 

increasing interval between sensor reports. 

12.3 Recommendations 

It is recommended that the TBT algorithm be modified to incorporate maneuver 

adaptive filtering. This adaptive mode would allow for two or more correlation regions 

thus making the algorithm more flexible. For instance, if the target starts to maneuver, 

the adaptive filter could take this into account and apply a different set of parameters and 

probabilities. Much of the literature on target tracking discusses the ability to use 

adaptive tracking parameters. This is a potential area for improving TBT as well. The 

table of TBT probabilities may be very good parameters for some targets. Another set of 

targets may perform better given a different set of probabilities. 
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This area also lends itself to the topic of optimizing the TBT parameters for 

direction difference probabilities. There are 14 different categories of traveling from one 

area to another by 5 different direction parameters, for a total of 70 parameters. These 

parameters have been determined through experimentation and prior knowledge of target 

movement over terrain. Perhaps an optimization technique suited for a large number of 

parameters could be applied to find the optimal set of parameters. 

12.4 Areas for Future Research 

From a systems engineering perspective, this work contributes a novel application of 

terrain based tracking as applied to air targets. As three-dimensional representation in 

computing improves, future research should explore the three dimensional air target data 

and apply it to terrain based tracking. 

Another area for future research is through group correlation analysis of air 

targets. In many instances, air targets travel in groups. Research by Brandon Bovey in 

the group correlation of ground targets could be applied to the air target data. 

This research should also examine the concept of goal regions. These are areas 

known to be of significant importance and are areas that a target is highly likely to travel 

to, in or around. For instance, in the air target tracking problem, potential areas for goal 

regions may include known air defense radar sites, ammunition depots, supply points, 
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range facilities, and airfields. Incorporating these areas would be approached the same 

way road networks are incorporated into TBT. These additional areas would also use 

Bayesian inference when a target approaches a known or potential goal region. 

Finally, TBT could also be used in conjunction with a KF algorithm or some other 

type of tracking algorithm that could improve tracking performance of the TBT used 

alone. This area would lend itself to classifying a target as linear and applying a linear 

tracker and when classified as a nonlinear track, apply TBT or a similar Bayesian 

inference or non-linear tracker. 
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Appendix A: Kaiman Filter Sample Parameters Data File 

#  

# Configuration file for the CIPTracker                   # 

#  

# note: to draw the NTC area launch app with -ntc flag 

# 

# turn off logging and graphics for fastest runs 

LOGGING_OFF 

GRAPHICS_OFF 

# file with time-ordered data... 

SENSORDATA data/15Jan_Test_Set.txt 

T 1 # seconds between new observations 

ERRORSIGMA 20       #default error sigma= 100 

# observation information... 

EASTINGX    490000 

NORTHINGY 3810180 # sensor report error 

# file containing AHAS vehicle info (esit table) 

# VEHICLEDATA    data/esit.ascii 

# track maintenance and correlation parameters... 

CORRTHRESH .00000000001 # threshold for NN correlation 

DELOLDTRACK    20 # period of time (seconds) to keep stale tracks 
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# display parameters... 

GRIDDRAWTHRESH .25      # draw probabilities above this proportion of mass 

MAXTRACKDISPLAYLENGTH    9999 # the maximum display length (#obs) of tracks 

NUMGRIDCOL        13       # max number of grid colors to display from each palette 

NUMGRIDCOLFILES 4 # number of grid color palettes available 

SCALEFACTOR       10.0 # (wall time) / (sim time) 

# parameters for the Kaiman filter... 

KALMANT    1 # interval between reports 

KALMANQ .1 

KALMANKG5 

#  
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Appendix B: Terrain Based Tracking Parameters Data File 

# 

# TBT Parameters 

# COMBINED FILE 

#data/combined_file_90mCells_662x506.raw 

/home/bjb9d/research/cipTracker/data/combined_file_90mCells_1013x842.raw 

# NW CORNER UTM COORDS 

492800 3955480 

# CELL SIDE LENGTH 

90 # grid size 

#635 480 # width (columns) and height (rows) of 90 meter cell file 

1013 842 

.46 # Speed units (m/s) 

. 1 # time step in seconds 

10 # max time steps to cross cell (limits array size) 

60 # min number of cells to expand grid 

1 # time evolution factor (sim time/wall time) 

0.02     # Psm (prob, stationary to moving) 
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0.01     # Pms (moving to stationary) 

# 

# relative motion inertia by direction difference 

# 

# pO  pi   p2  p3   p4 #       Src    Dst 

50  40   30   20   10 #      No Go  No Go 

10   9   8    1    0#      No Go   Open 

50  40   30   20   10 #      No Go   SecRoad 

50  40   30   20   10 #      No Go   PriRoad 

10    9    8    1    0 #      Open   No Go 

500   50   10    0    0#  22% Open   Open 

# 500   80   20    5    1 #  22% Open   Open 

400 250 100    5    0#  28% Open    SecRoad 

600 450 250   50    1 #   50% Open   PriRoad 

50   40   30   20   10 #      SecRoad No Go 

50   35   20   10    0#   2% SecRoad Open 

1000 500 150   50    1#   29% SecRoad SecRoad 

2000 1000 700 300    5#   69% SecRoad PriRoad 

10   9    8    1    0#      PriRoad No Go 

10    9    8    1    0#    1% PriRoad Open 

150   40   30   20   10 #   11% PriRoad SecRoad 

1500 450 150   35    1#   87% PriRoad PriRoad 
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# Relative stationary inertia 

# Src    Dst 

0#NoGo  No Go 

0#NoGo   Open 

0#NoGo   SecRoad 

0#NoGo  PriRoad 

0 # Open   No Go 

0 # Open   Open 

0 # Open    SecRoad 

0 # Open   PriRoad 

0 # SecRoad No Go 

0 # SecRoad Open 

0 # SecRoad SecRoad 

0 # SecRoad PriRoad 

0 # PriRoad No Go 

0 # PriRoad Open 

0 # PriRoad SecRoad 

0 # PriRoad PriRoad 

END OF PARAMETERS 


